An Analytical Perspective for Evaluating Microgrid Resiliency

Anuradha Annaswamy Director, Active-adaptive Control Laboratory Department of Mechanical Engineering MIT

Smart Grid: Internet of things

THE FUTURE GRID

🖗 🕮 🛛 🔟 🖀 🖕 🗴 📶 Integration of renewables

Hundreds of millions of active endpoints

controls to manage active ends advanced power electronics sensors - actuators - devices

Millions of individual and institutional agents

new economic mechanisms and business models

Properties of μ_{grid}

- Distributed generators with storage
- Autonomous load centers
- Operates in interconnected/islanded mode

Network of Microgrids

Infinite grid

THE FUTURE GRID

66

new economic mechanisms and business models

$= \mu_{grid} + \dots + \mu_{grid}?$

Breake

Microgrid

Feeder Circuit Breaker

Microgrid advantages

- Efficient integration of Distributed Energy Resources
- Access to Distributed Community Storage
- Demand Response enables a large percentage of flexible loads
- Local management of resiliency and cybersecurity
- A scaled evaluation of a smart grid paradigm

Microgrid goals

- To maintain power balance in the system.
- To ensure that operating limits are maintained
 - Generators limit
 - Tie-lines limit
- To ensure that the system frequency is constant (at 60Hz or 50Hz).
- To achieve the above with renewable energy despite intermittency & uncertainty
- Islandability

Microgrid Control

- Primary control
 - Immediate (automatic) action to sudden change of load.
 - For example, reaction to frequency change.
- Secondary control
 - Restore system frequency,
 - Restore tie-line capacities to the scheduled value, and,
 - Make the areas absorb their own load.
- Tertiary control
 - Make sure that the units are scheduled in the most economical way.

Resilience to Islandability/Connectability

Transactive control

The use of dynamic market mechanism to send an incentive signal and receive a feedback signal within the power system's node structure

- Incentive Signal: Dynamic Pricing
- Feedback Signal:
 - Adjustable Demand (Market Level)
 - (Price Responsive, and Regulation Responsive)
 - Area Control Error (Secondary Level)
 - Governor Control (Primary Level)

- Market Transactions
- Active Control at the AGC level with Regulation Demand Response
- Island from/reconnect to the infinite grid

Transactive Control Framework*

for electricity innovation

at ILLINOIS INSTITUTE OF TECHNOLOGY

Power & Energy Society*

Transactive Control for μ_{grid} : Challenges

- Design of the incentive and feedback signal so as to ensure
 - Power balance
 - Voltage and frequency control
 - Islanding/reconnection

